
Toward Explainable AI: An ORM-Based Semantic Framework
Bridging Neural and Symbolic Worlds Through Role-Based Modeling

Glenn Sawatsky
embedded-commerce.com

May 27, 2025

Executive Summary

As artificial intelligence takes on more roles demanding interpretability and explainability,
particularly with the growing blend of deep learning and structured reasoning, there's a rapidly
increasing need for knowledge modeling systems that are both human-understandable and
machine-operable. While established semantic technologies like OWL and RDF offer formal
precision, they often fall short in terms of the expressiveness and ease of use required by
subject matter experts and today's mixed AI systems.

This paper introduces a novel modeling approach rooted in Object Role Modeling (ORM),
extended and modernized to serve as a foundational semantic interface for neuro-symbolic AI.
This ORM modeling engine acts as the bridge between natural language input, symbolic logic,
and probabilistic inference by offering:

● A relationally grounded, role-based semantic model
● Non-lossy JSON-LD exports for interoperability
● First-order logic (FOL) representations of constraints
● Verbalizations to provide natural language transparency
● Bi-directional orchestration between neural and symbolic reasoning

This system is built to tackle a wide array of applications, from approving financial products and
managing online ad bids to powering personal digital assistants, offering both strong precision
and adaptable design. This paper has outlined an 18-month roadmap and a plugin-based
strategy that leverages large language model (LLM) orchestration. This approach details how to
create a truly practical, scalable tool, providing a fresh perspective within the evolving
neuro-symbolic AI field.

Rather than competing with existing logic engines or probabilistic frameworks, the ORM tool
complements them. It offers a modeling-first paradigm that successfully unites clarity, inference,
and explanation. This paper lays out the foundational vision, system architecture, key use
cases, orchestration flows, and ecosystem collaborations necessary to bring that future to life.

1. Problem Space and Market Context

While large language models (LLMs) have brought remarkable fluency and generative power,
they often struggle with reliability, logical consistency, and interpretability. Conversely, symbolic
systems grounded in formal logic, while offering precision and explainability, tend to be brittle,
tough to scale, and largely inaccessible to most domain experts.

Semantic modeling technologies such as OWL, RDF, and SPARQL were originally designed to
provide machine-readable, logic-grounded representations of domain knowledge. However, they
suffer from several key shortcomings:

● Cognitive opacity: Their syntax and modeling primitives are unfamiliar to non-experts,
significantly limiting adoption.

● Triple-centric rigidity: Being grounded in subject-predicate-object triples makes it
genuinely difficult to naturally model multi-role, constraint-rich interactions.

● Disconnection from AI pipelines: They largely remain isolated from the workflows of
LLMs, neural nets, and modern software tooling.

Meanwhile, relational databases, often criticized for their "closed-world" assumptions, are
seeing a revitalization thanks to technologies like DuckDB, which offer lightweight, in-process
analytics without sacrificing expressive power.

Yet in the midst of all this, there's currently no single system that provides:

● A modeling-first, role-based approach to knowledge representation.
● Integration between neural prediction and symbolic validation.
● Explainable, verbalized, and exportable logic structures.
● A human-intuitive modeling interface that can serve both logic engines and LLMs.

This white paper directly addresses this significant gap.

2. Mission, Vision, and Value Proposition

Mission

To empower both humans and AI systems with an expressive, role-based semantic modeling
framework that bridges symbolic reasoning and neural inference revitalizing the relational
paradigm to serve as the semantic foundation for trustworthy, explainable, and collaborative AI.

Vision

With large language models (LLMs) and neuro-symbolic systems increasingly shaping AI
applications, the vision behind this paper is to position Object Role Modeling (ORM) as a
semantic interface layer for hybrid reasoning systems and to envision a world where:

● Humans model domains naturally and precisely through roles, constraints, and
verbalizations.

● Machines infer, validate, and reason using those models in both probabilistic and logical
forms.

● Models evolve right alongside data and conversation, with explanation and collaboration
at every step.

As progress is made, this vision will culminate in a fully realized modeling platform, one that's
truly interoperable, explainable, and seamlessly integrated with both LLM orchestration and
symbolic reasoning engines.

Core Value Proposition

Stakeholder Value Delivered

Domain
Experts

Natural modeling with rich constraint logic, verbalized explanations, and
no need to learn RDF or OWL

AI Engineers JSON-LD exports, FOL constraints, and pluggable symbolic/neural flows
for reasoning and validation

Product
Teams

Rapid prototyping of explainable semantic systems in finance, advertising,
personal assistants, and beyond

AI Systems A live semantic backbone that structures input, informs inference, and
ensures rule adherence dynamically

3. System Architecture & Technology Stack
At the heart of the platform sits the ORM Engine, acting as a live modeling and reasoning core.
It takes input from natural language (often via LLMs), translates concepts into structured,
role-based models, enforces constraints through logic, and then exports semantically rich
outputs in multiple formats. The whole system is modular, scalable, and specifically designed to
interact with both neural and symbolic reasoning layers.

3.1 High Level Architecture Overview

Inputs:

● Natural language (e.g., user-entered facts, documents)
● Tabular or graph data
● Neural model outputs (e.g., LLM-generated structures or classifications)

Core Components:

● ORM Modeler UI: The visual modeling interface
● ORM Engine (Python/Node.js): Parses, validates, and maintains logical structure
● Constraint Compiler: Converts ORM constraints to First Order Logic (FOL)
● Verbalization Engine: Generates natural language explanations of model elements and

rules
● JSON-LD Exporter: Generates semantic web-compatible, non-lossy model files
● DuckDB Backend: Stores role-based data and supports open-world querying logic

Neural-Symbolic Interfaces:

● LLM Orchestration: Generates plugin logic modules for an orchestration engine
● LNN Integration: Trainable logic constraints and soft inference
● Symbolic Validator: Flora-2, ULKB, or Prolog-based engines validate model

consistency

Outputs:

● Orchestration aware executable logic (FOL)
● JSON-LD enriched data models
● Verbalized narratives
● Constraint-aware LLM prompts and responses

4. Strategic Roadmap (H1-2025 to Q2-2026)
Recognizing just how rapidly AI technologies are evolving, this roadmap focuses on delivering a
functional and adaptable platform across three structured phases:

Q3-2025: Comprehensive Proof of Concept

Objectives:

● Build a working prototype of the ORM modeling tool.
● Implement constraint rendering into FOL.

● Enable non-lossy JSON-LD export with embedded verbalizations.
● Integrate DuckDB for open-world reasoning simulation.
● Implement LLM-assisted schema generation from natural language.

Key Deliverables:

● Interactive visual ORM editor
● ORM-to-DuckDB schema generator
● ORM constraint-to-FOL compiler
● Export pipeline (JSON-LD + FOL + verbalizations)
● Prototype LNN pipeline with ORM supplied logic

Q1-2026: Integration and Expansion

Objectives:

● Enable pluggable neuro-symbolic orchestration flows (LNNs, Flora-2, Prolog).
● Expand model evolution capabilities and collaborative editing features.
● Implement role-based access and version control.
● Support domain-specific constraint templates (finance, advertising, scheduling, etc…).

Key Deliverables:

● Plugin architecture for logic engines
● Live inference + symbolic validation pipeline
● Collaborative multi-user model editing
● Early adopter pilots with financial and ad tech partners

Q2-2026: Semantic Interface Maturity

Objectives:

● Embed ORM modeling as a semantic “hub” for LLM workflows.
● Support explainable AI workflows with logic-driven, LLM-verbalized outputs.
● Launch ORM schema registry and public model sharing.
● Standardize JSON-LD based exchange format with verbalization metadata.

Key Deliverables:

● ORM-based prompt shaper and result validator for LLM pipelines
● Public knowledge base of reusable ORM models
● Hosted ORM collaboration and validation service

● Cross-inference dashboard: LNN, symbolic, and statistical feedback loop

5. Demonstration Use Cases
To ground this vision in practical relevance, let’s use three familiar domains to illustrate the
system’s hybrid reasoning orchestration.

5.1 Financial Product Approval Workflow

Scenario: New investment products must undergo risk assessments, policy reviews, and legal
compliance checks.

Steps:

● LLM parses intake documents into ORM facts (e.g., Product, RiskScore,
MarketExposure).

● ORM constraints (e.g., “no approval if high risk and volatile market”) rendered in FOL.
● Symbolic engine validates logical compliance.
● LNN may suggest corrections or predict compliance based on past patterns.
● Verbalizations explain decision trail for auditors.

5.2 Auto-Bidding in Online Advertising

Scenario: Ads must be placed in real-time, balancing user intent, regulatory restrictions, and
budget.

Steps:

● Neural model predicts IntentScore per user.
● ORM constraints ensure bids do not exceed Budget, violate ExclusionZones, or

break ComplianceRule.
● Symbolic validator acts as final decision filter before bid execution.
● All actions logged in ORM-verbalized format for transparency.

5.3 Smart Scheduling Assistant (Everyday Scenario)

Scenario: A personal assistant schedules meetings, considering user preferences, sleep
habits, and task urgency.

Steps:

● LLM infers user rules from email/chat (“no meetings before 10 am”).
● ORM maps user rules, generates TimeSlot and ConflictRule logic.
● Scheduling options proposed, checked for constraint violations.
● Assistant explains rescheduling decisions via ORM verbalization.

6. Competitive Landscape and Ecosystem Synergies
While the vision behind this ORM engine is novel, it exists in an ecosystem of tools that either
overlap partially in function or offer symbiotic integration potential.

6.1 Comparable or Complementary Tools

System Type Summary Relationship

Flora-2 /
ErgoAI

Symbolic
Engine

Logic programming based
on F-logic and HiLog

Potential backend for rule
execution from ORM constraints

GNOWSYS Semantic
Platform

GNU project focused on
semantic node networks

Complementary for collaborative
ontology sharing

Vadalog Datalog
Reasoner

Optimized for recursive rule
execution at scale

Could be paired with ORM for
scalable symbolic querying

SemTK Semantic
Toolkit

User-friendly SPARQL
query builder

Could be adapted for
ORM-based model querying

QLever SPARQL
Engine

High-performance
RDF+text search engine

Useful for layered indexing of
ORM models in JSON-LD

6.2 Strategic Positioning

● ORM Tool’s Edge: Starts with human-first conceptual modeling, rather than logic
engines or data pipelines.

● Value Add: Exports to JSON-LD + FOL + Verbalization = semantic triangulation
(readable + logic-ready + interoperable).

● Role: A modeling "chassis" that enables other systems (LLMs, reasoners) to plug in and
work with meaning-rich schemas.

7. Alternative Approaches to Logic-Neural Integration
Several research directions and toolkits aim to fuse symbolic and neural components—offering
insights or potential points of divergence.

Framework Approach Relevance

Logic Tensor Networks
(LTNs)

Learnable logic layers using
many valued semantics

Could host ORM constraints as
trainable, differentiable rules

DeepProbLog Probabilistic logic
programming + neural
predicates

Probabilistic alternative to
symbolic only ORM rules

Neuro-Symbolic
Concept Learner

Learns object based symbolic
representations from images

Reinforces the need for model
grounded semantics

NeuPSL Combines Probabilistic Soft
Logic with neural features

May offer fuzzy interpretations
for soft ORM constraints

NVSA
(Neuro-Vector-Symbolic
Architectures)

High dimensional distributed
symbolic reasoning

Long term research vision;
ORM could scaffold vector
encodings

Threat Assessment

● These systems offer powerful reasoning methods, but lack a clear modeling interface.

● They could benefit from an ORM engine as a frontend or logic supplier.

8. Export Capabilities: Interoperability, Explainability, and
Logic Grounding

A core strength of the ORM engine vision lies in its ability to export models in formats that
support multiple layers of reasoning and communication, spanning everything from machine
logic to human understanding to broad semantic interoperability.

8.1 JSON-LD: Semantic Interoperability Without Loss

The proposed tool’s export to JSON-LD offers:

● Lossless translation of ORM structures into a web-native, RDF-compatible format.

● Support for OWL interop and knowledge graph ingestion pipelines.

● Seamless integration with semantic tools (e.g., GraphDB, schema.org, Google KG).

Each role, fact type, and constraint is preserved in a richly typed format, ready for either triple
conversion or direct use by structured neural systems.

8.2 Verbalizations: Human Readable Logic

ORM verbalizations allow every modeled fact and constraint to be expressed in natural
language, providing:

● Domain expert readability

● Transparent system output explanations

● Training data for LLM-based prompt engineering

● Audit trails for reasoning decisions

Example:
 Constraint: ∀x (Person(x) → ∃!y BornOn(x, y))
 Verbalization: “Every person has exactly one birth date.”

8.3 First Order Logic (FOL): Symbolic Backbone

ORM constraints are also rendered in FOL, enabling:

● Direct reasoning via symbolic engines (e.g., Flora-2, ULKB, Prolog)

● Constraint validation in datasets

● Logic guided model training (via LNNs or prompt-tuned LLMs)

● Explainable AI pipelines rooted in hard logic

Example Mapping:

● ORM uniqueness constraint → ∀x ∀y ∀z ((R(x, y) ∧ R(x, z)) → y = z)

FOL outputs can also be exported as logic programs or embedded into symbolic workflows,
enabling machine verifiable consistency.

8.4 Synchronized Outputs for Hybrid Orchestration

Each ORM model can simultaneously produce:

● A verbalization layer (for explanation and LLM prompts)

● A logic layer (for FOL or symbolic checking)

● A semantic layer (in JSON-LD for KG compatibility)

This makes the system uniquely suited to orchestrate:

● Data validation

● LLM prompt shaping

● Hybrid inference

● Knowledge integration

9. Looking Beyond: AI Vision for Year 2 and Beyond

With the burgeoning field of neuro-symbolic systems and general purpose AI agents, the need
for structured, explainable knowledge representation is set to skyrocket. An ORM engine is
ideally situated to serve as a semantic translator for these future systems.

9.1 AI Trends That Reinforce This Vision

● Agentic Systems: As multi-agent LLMs proliferate, the need for a shared ontology
defining agent state, roles, and constraints will be critical. ORM delivers this essential
common ground.

● Self-reflective LLMs: Future LLMs will need to explain and reason about their actions.
ORM verbalizations and FOL constraints become the natural mechanism for this.

● LLM Alignment and Guardrails: Role-based models can inform dynamic prompt
shaping, constraint validation, and dialogue logic.

● Memory and World Models: ORM schemas act as persistent, interpretable “skeletons”
of the world an AI interacts with thus enabling modular, transparent memory.

9.2 Future Enhancements

Feature Description

ORM-Driven Prompt
Compiler

Shape LLM prompts dynamically based on model structure
and verbalizations

ORM-Agent Middleware Embed ORM as the semantic kernel in AI agents

Explainability Dashboards Combine constraints, outputs, and logic traces in real-time
UIs

Symbolic Memory APIs Let agents use ORM as read/write memory via natural
language

Multi-Modal Semantic
Anchoring

Use ORM to ground not only text, but image and event data
in symbolic models

10. Conclusion and Next Steps

This paper has outlined the foundations for a next-generation modeling platform that blends the
interpretability of logic with the power of neural models. The ORM engine serves not only as a
modeling tool but as a semantic backbone for hybrid AI.

You’ve seen:

● The system architecture and tech stack

● Its multi-layered export capabilities

● Use cases that span enterprise and everyday life

● A roadmap designed for adaptability and integration

● How the tool fits into a wider, collaborative ecosystem

Next Steps

● Finalize MVP technical requirements

● Select pilot use case for Year 1 demonstration

● Establish open collaboration channels (community forum, GitHub repo, etc.)

● Initiate partnerships with symbolic reasoning and LLM orchestration teams

Appendix A: Revitalizing Relational Databases – The
Case for DuckDB
Relational databases have long been the foundation of structured data; however, in recent years
they’ve often been bypassed in favor of graph databases or NoSQL alternatives, particularly
within AI and semantic technologies. This departure often stems from the assumption that
relational systems enforce a closed-world assumption (CWA) and lack native reasoning
capabilities. Yet this perspective overlooks their foundational roots in first-order logic and
significantly underestimates recent advancements in tools like DuckDB.

DuckDB is uniquely positioned to serve as a modern relational engine within a neuro-symbolic
AI stack. Its in-process, high-performance nature, combined with columnar storage and SQL
extensibility, makes it an ideal partner for an ORM-based semantic modeling approach.

Why Relational Still Matters

● ORM is inherently relational: Roles, fact types, and constraints map naturally onto
relational structures.

● First-order logic and relational algebra are isomorphic: The theoretical foundation of
ORM and relational databases is perfectly aligned.

● DuckDB enables symbolic and probabilistic workflows: It supports rich queries over
structured data without the typical overhead of traditional RDBMS systems.

DuckDB as a Semantic Backbone

This vision positions DuckDB not merely as a data store but as a logic-aware analytic substrate:

● It acts as the execution layer for ORM-generated relational schemas.
● It simulates open-world assumptions through explicit near-6th NF relationships and

view-based logic while supporting natural multi-role relationships through reification.
● It supports constraint validation through SQL-based checks, which can be easily

augmented by external symbolic reasoners.

Strategic Fit for Hybrid AI

DuckDB complements ORM by effectively bridging the gap between conceptual models and
execution semantics. This includes:

● Translating ORM constraints into SQL for integrity checks.
● Embedding semantic logic directly into relational data model workflows.
● Acting as a lightweight analytics engine for model validation and inference.

Integration Potential

DuckDB integrates naturally with symbolic and logic-based systems via intermediate formats
(e.g., CSV, JSON) and scripting environments (e.g., Python, Node.js). It also supports logic
programming overlays through connectors to Flora-2, Prolog, and other rule engines.

In summary, DuckDB helps reestablish the relational paradigm as a first-class participant in
semantic AI, offering a lightweight, logic-compatible, and scalable path forward.

	1. Problem Space and Market Context
	2. Mission, Vision, and Value Proposition
	Mission
	Vision
	Core Value Proposition

	3. System Architecture & Technology Stack
	3.1 High Level Architecture Overview

	4. Strategic Roadmap (H1-2025 to Q2-2026)
	Q3-2025: Comprehensive Proof of Concept
	Q1-2026: Integration and Expansion
	Q2-2026: Semantic Interface Maturity

	5. Demonstration Use Cases
	5.1 Financial Product Approval Workflow
	5.2 Auto-Bidding in Online Advertising
	5.3 Smart Scheduling Assistant (Everyday Scenario)

	6. Competitive Landscape and Ecosystem Synergies
	6.1 Comparable or Complementary Tools
	6.2 Strategic Positioning

	7. Alternative Approaches to Logic-Neural Integration
	Threat Assessment

	8. Export Capabilities: Interoperability, Explainability, and Logic Grounding
	8.1 JSON-LD: Semantic Interoperability Without Loss
	8.2 Verbalizations: Human Readable Logic
	8.3 First Order Logic (FOL): Symbolic Backbone
	8.4 Synchronized Outputs for Hybrid Orchestration

	9. Looking Beyond: AI Vision for Year 2 and Beyond
	9.1 AI Trends That Reinforce This Vision
	9.2 Future Enhancements

	10. Conclusion and Next Steps
	Next Steps

	Appendix A: Revitalizing Relational Databases – The Case for DuckDB
	Why Relational Still Matters
	DuckDB as a Semantic Backbone
	Strategic Fit for Hybrid AI
	Integration Potential

